Erdős 1947: If $\binom{n}{k}2^{1-\binom{k}{2}} < 1$ there exists a two coloring of the edges of K_n with no monochromatic K_k.

Proof: Color Randomly!
Theorem (Turán). Any graph G has an independent set S with

$$|S| \geq \sum_{v \in G} \frac{1}{d_v + 1}$$

Randomized Algorithm

- Order Vertices Randomly.
- Place v in S greedily.

If v comes before its neighbors then it goes into S.

$$\Pr[v \in S] \geq \frac{1}{d_v + 1}$$

Linearity of Expectation:

$$E[|S|] = \sum_{v \in G} \Pr[v \in S] \geq \sum_{v \in G} \frac{1}{d_v + 1}$$

Erdős Magic: Such S **MUST** exist.
$|A_i| = n, \ 1 \leq i \leq m = 2^{n-1}k$

Seek Red/Blue χ with no A_i monochromatic

Erdős [1963]: $k < 1 \Rightarrow \exists \chi$

Beck [1978]: $k < cn^{1/3} \Rightarrow \exists \chi$

Radhakrishnan-Srinivasan[2000]

$$k < c[n/\ln n]^{1/2} \Rightarrow \exists \chi$$

Erdős [1964]: There exists family with $k = cn^2$

with no χ
Coloring Algorithm(s)

1. Color Randomly
2. Order Vertices Randomly.
3. Consider sequentially. If v “still dangerous” switch $\chi(v)$ with probability p

Still Dangerous: $v \in A_i$ which has always been monochromatic

FAIL: Some A_i monochromatic at end

Erdős Magic: If $\Pr[FAIL] < 1$ χ MUST exist
Two Failure Modes

FAILI: A_i was “Red” and stayed Red

FAILII: A_i wasn’t Red and became Red

\[\Pr[FAILI(A_i)] = 2^{1-n}(1 - p)^n \]

\[\Pr[FAILII] \leq (2^{n-1}k)(2^{1-n}(1 - p)^n) = k(1 - p)^n \]
A_i blames A_j if

- $A_i \cap A_j = \{v\}$
- A_j Blue at start
- A_i Red at end
- v LAST point of A_i to change
- When v reached A_j all Blue

Theorem:

If FAILII then some A_i blames some A_j

Corollary:

$$\Pr[FAILII] \leq \sum_{i \neq j} \Pr[A_i \text{ blames } A_j]$$
Bounding $\Pr[A_i \text{ blames } A_j]$

Fix ordering.

- Factor 2 for Red/Blue symmetry
- v Blue and Flips: $p/2$
- $w \in A_j$ after v: $1/2$
- $u \in A_i$ after v: $1/2$
- $w \in A_j$ before v: $1/2 - p/2$
- $u \in A_i$ before v: $1/2 + p/2$

I: Number of $w \in A_i$ before v

J: Number of $u \in A_j$ before v

$\Pr[A_i \text{ blames } A_j | I, J] = 2^{2-2n}p(1+p)^{|I|}(1-p)^{|J|}$
A Bad Gamble

\(n - 1 \) Red Cards, \(n - 1 \) Blue Cards, Joker
Shuffle. Start with 1000 Euro
Red: Multiply funds by \(1 + p \)
Blue: Multiply funds by \(1 - p \)
Joker: Cash In.
Theorem: Expectation less than initial
Corollary

\[\Pr[A_i \text{ blames } A_j] \leq 2^{2-2np} \]

Corollary

\[\Pr[FAILII] \leq (2^{n-1}k)^2 2^{2-2np} = k^2p \]
Asymptotic Calculus

\[\Pr[FAIL] < k(1 - p)^n + k^2p \]

Erdős Magic: If for some \(p \in [0, 1] \)

\[k(1 - p)^n + k^2p < 1 \quad (*) \]

then \(\chi \) **MUST** exist.

What is \(\max k = k(n) \) so that (*) holds for some \(p \in [0, 1] \)?

Answer: \(k \sim c\sqrt{n/\ln n} \)
Liar Game

Paul seeks $x \in \{1, \ldots, 100\}$.

Ten Queries. Carole may lie once.

Theorem: Carole Wins!

Carole plays randomly

At end of game:

$\Pr[x \text{ possible}] = \frac{11}{1024}$

Expected number of possible $100 \cdot \frac{11}{1024} > 1$

When > 1 possible Carole wins

Carole sometimes wins

Erdős Magic: Carole always wins!
Counting Connected Graphs
and the Giant/Dominant Component

Joint with
Remco van der Hofstad (EURRANDOM)
Nitin Arora (Courant)
Complexity = E-V+1

\[C(k, l) = \text{Number of} \]

CONNECTED Labelled Graphs

\[k \text{ Vertices} \]

Complexity \(l \)

\[C(k, 0) = k^{k-2} \text{ Cayley} \]

\[C(k, l) \sim c_l k^{3l/2} k^{k-2} \text{ Wright} \]

\[l > \left(\frac{1}{2} + \epsilon \right) k \ln k \text{ Erdős-Rényi} \]

\[k, l \to \infty \text{ Bender, Canfield, McKay} \]
The Łuczak Gem

\[X = \text{number of } (k, l) \text{ components in } G(n, p) \]

\[E[X] = C(k, l) \binom{n}{k} p^{k+l-1} (1-p)^{k(n-k)} + \binom{k}{2} -(k+l-1) \]

\[X \leq \frac{n}{k} \text{ tautologically} \]

\[C(k, l) \leq \frac{n}{k} \left[\binom{n}{k} p^{k+l-1} (1-p)^{k(n-k)} + \binom{k}{2} -(k+l-1) \right] - 1 \]

for all \(n, p \).

Minimize using Asymptotic Calculus!

If \(l = \Theta(k) \), \(p \sim cn^{-1} \), \(c > 1 \).

Pick \(n, p \) so Giant most likely \((k, l) \)

\[E[X] = \Omega(n^{-2}) \] (even better)

\(C(k, l) \) within \(n^2 \) Factor
Tilted Balls in Bins

$k - 1$ balls, k bins, $p \in (0, 1]$

Truncated Geometric

Ball j in Bin T_j

$$Pr[T_j = i] = \frac{p(1 - p)^{i-1}}{1 - (1 - p)^k}$$

Z_i balls in bin i

$Y_0 = 1$, $Y_i = Y_{i-1} + Z_i - 1$ (so $Y_k = 0$)

TREE: $Y_t > 0$, $0 \leq t < k$

$$M := \sum_{i=0}^{k} (Y_i - 1) = \binom{k}{2} - \sum_{j=1}^{k} T_j$$
$G(k, p)$ Random Graph
Vertices $0, 1, \ldots, k - 1$
Adjacency Prob p

THM: Prob $G(k, p)$ Connected & Complexity l

$$l = C(k, l)p^{k+l-1}(1-p)^{k(k-1)/2-k-l+1} = A_1 A_2 A_3$$

with

$$A_1 = (1 - (1 - p)^k)^{k-1}$$

$$A_2 = \Pr[\text{TREE}]$$

$$A_3 = \Pr[\text{BIN}[M, p] = l | \text{TREE}]$$

Strategy: A_2, A_3 determine $C(k, l)$
Breadth First Search

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 \\
N & N & Y & Y & N \\
N & N & - & - & N \\
Y & N & - & - & N \\
- & Y & - & - & Y \\
- & - & - & - & - \\
- & - & - & - & - \\
\end{array}
\]

\[T_3 = T_4 = 1, \ T_1 = 3, \ T_2 = T_5 = 4\]

\[A_1: \ \text{All } T_j \ \text{defined}\]

\[\vec{Z} = (2, 0, 1, 2, 0, 0)\]

\[\vec{Y} = (1, 2, 1, 1, 2, 1, 0)\]

TREE: BFS doesn’t terminate early

Tree Edges 03, 04, 41, 12, 15

\[M = 2 \ \text{Unexposed 34, 25}\]
Setting the Tilt p

\[\mu := E[M], \quad \sigma^2 := Var[M] \]

\[p\mu = l \]

Three Regimes

Small $l = o(k), \; k^{-3/2} \ll p \ll k^{-1}$

Large $l = \Theta(k), \; p = \Theta(k^{-1})$

Very Large $l \gg k, \; p \gg k^{-1}$

($l > ck \ln k; \; p > c' \frac{\ln k}{k}$ Erdős-Rényi)
Small: $k^{-3/2} \ll p \ll k^{-1}$

$\epsilon = \frac{1}{2} pk$

Left $Z_i \text{ Poisson } 1 + \epsilon$

Galton-Watson $\Pr[\text{ESC}] \sim 2\epsilon$

Right $Z_i^* = Z_{k-i}; Y_i^* = Y_{k-i}$

$Y_0^* = 0, Y_i^* = Y_{i-1}^* + 1 - Z_i^*$

Z_i^* Poisson $1 - \epsilon$

$\Pr[\text{ESC}^*] \sim \epsilon$

*** Scaling for ESC, ESC* is $\epsilon^{-2} \ll k$

$\Pr[\text{TREE}] \sim \Pr[\text{ESC}] \Pr[ESC^*] \sim 2\epsilon^2$
Large: \(p \sim \frac{c}{k} \)

Left \(Z_i \) Poisson \(\frac{c}{1-e^{-c}} \)

Galton-Watson \(\Pr[\text{ESC}] \sim 1 - e^{-c} \)

Right \(Z_i^* = Z_{k-i} \), \(Y_i^* = Y_{k-i} \)

\(Y_0^* = 0 \), \(Y_i^* = Y_{i-1}^* + 1 - Z_i^* \)

\(Z_i^* \) Poisson \(\frac{ce^{-c}}{1-e^{-c}} \)

\(\Pr[\text{ESC}^*] \sim 1 - \frac{ce^{-c}}{1-e^{-c}} \)

Chernoff: \(Y_i > 0 \) in middle

\(\Pr[\text{TREE}] \sim \Pr[\text{ESC}] \Pr[\text{ESC}^*] \rightarrow 1 - (c+1)e^{-c} \)

Very Large \(p \gg k^{-1} \)

Chernoff: \(Y_i > 0 \) all \(i \)

\(\Pr[\text{TREE}] \rightarrow 1 \)
Gaussian M

$$M := \binom{k}{2} - \sum_{j=1}^{k} T_j$$

Esseen: $\Pr[M < \mu + u\sigma] \rightarrow \Pr[N(0, 1) < u]$

*** Still holds conditional on TREE

Hardest when p barely $\gg k^{-3/2}$

Easy when p Large

Trivial when p Very Large
From CLT to Local Stats

\[E[W_k] = \mu_k, \quad \text{Var}[W_k] = \sigma_k^2, \quad V_k = BIN[W_k, p_k], \]

\[l_k = \mu_k p_k = E[V_k] \]

Assume \(p_k^2 \sigma_k^2 = O(p_k \mu_k) \)

\((\sigma_k^+)^2 := p_k^2 \sigma_k^2 + p_k \mu_k \)

Assume \(\sigma_k^{-1} (W_k - \mu_k) \to N(0, 1) \)

THM: \(V_k \) Local CLT, Mean \(l_k \), Var \((\sigma_k^+)^2 \)

\[\Pr[V_k = l_k] \to \frac{1}{\sqrt{2\pi \sigma_k^+}} \]

Apply to \(M|\text{TREE} \)
\[A_3 = \Pr[BIN[M, p] = l | TREE] \]

Small: \(p \mu = l = p^2 \sigma^2, \ A_3 \sim (4\pi l)^{-1/2} \)

Very Large: \(p \mu = l \gg p^2 \sigma^2, \ A_3 \sim (2\pi l)^{-1/2} \)

Large: \(p \sim \frac{c}{k}. \ p^2 \sigma^2 = \Theta(l), \ A_3 \sim g(c) l^{-1/2} \)
The Giant/Dominant Component

\[G(n, p) \]

\[p = \frac{c}{n}, \ c > 1 \text{ Erdős-Rényi Giant} \]

\[p = \frac{1}{n} + \lambda n^{-4/3}, \ \lambda \to +\infty \]

Supercritical: Dominant Component

THM: Probability \(C(v) \) has \(k \) vertices, complexity \(l \) is \(\sim A^*_1 A_2 A_3 \) with

\[A^*_1 = \Pr[\text{BIN}\[n - 1, 1 - (1 - p)^k\] = k - 1] \]

Corollary: Local Stats for \(k, l \) of Giant/Dominant Component. Correlated Gaussians

(Caution: Work in Progress!)
Generating Random Connected Graph

Time $\Theta(K + L)$ (!!) for $L = \Omega(\ln K)$

p with $p \mu = L$

Tilted Balls into Boxes

$L = \Omega(K)$ get BFS Tree with prob. $\Omega(1)$

$L = o(K)$ use Fast Abort.

Add precisely L of M unexposed with prob.

$$\frac{\Pr[\text{BIN}[M, p] = L]}{\max_m \Pr[\text{BIN}[m, p] = L]}$$
Games Mathematicians Play
Paul versus Carole

N Possibilities

Q Yes/No Paul Queries

K (or fewer) Carole Lies

Try it with $N = 100$, $Q = 10$, $K = 1$

Carole plays Adversary Strategy

\Rightarrow Perfect Information

\Rightarrow Winning Strategy for Paul or Carole

$B_K(Q) = \text{maximal } N \text{ so that Paul Wins}$

Theorem:

$$B_K(Q) \sim \frac{2^Q}{\binom{Q}{K}}$$
Carole Strategy

Notation

\[\binom{Q}{\leq K} = \sum_{I=0}^{K} \binom{Q}{I} \]

Theorem: \(N\left(\binom{Q}{\leq K}\right) > 2^Q \Rightarrow \text{Carole Wins} \)

Proof 1: Preserve Ministrategies

Proof 2: Random Play

Proof 1 \Rightarrow \text{Proof 2: Derandomization}
Paul Strategy

\(K = 1 \), General Case similar

Weight = Number Viable Ministrategies

Initial Weight \(W_Q > (1 + \epsilon)2^Q \)

Paul splits ministrategies as evenly as possible

\[W_{i-1} \leq \frac{1}{2}(W_i + i + 1) \]

(worst case: \((2L + 1, 0)\))

Errors don’t accumulate!

When reach \((1, S')\), Endgame
Halflie: No False Negatives

N Possibilities

Q Queries

K Halflies

$A_K(Q) = \text{maximal } N$, Paul Wins

Theorem (Cicalese/Mundici): $A_1(Q) \sim 2^{Q+1}/Q$

Dumitriu/JS:

$$A_K(Q) \sim 2^K B_K(Q) \sim 2^K \frac{2^Q}{\binom{Q}{K}}$$
Position $\vec{x} = (x, y) ((x_0, \ldots, x_K))$

Paul Query: $(a, b) ((a_0, \ldots, a_K))$

Yes $(a, b + x - a)$; No $(x - a, y - b)$

Perfect Split $\left(\frac{x}{2}, \frac{y}{2} - \frac{x}{4} \right)$

Yes/No $L\vec{x} := \left(\frac{x}{2}, \frac{y}{2} + \frac{x}{4} \right)$

Problems: Integrality, Nonnegativity

Weight $W_Q(\vec{x}) = L_Q(\vec{x}) \cdot 1$

$W_Q(x, y) = 2^{-Q}(x(1 + \frac{Q}{2}) + y)$

$2^{-Q}(x_0p_K(Q) + \ldots + x_{K-1}(1 + \frac{Q}{2}) + x_K)$
Paul Strategy

Start $(N, 0), N < (1 - \epsilon)2^{Q+1}/Q$

- Give Ground to (N, N)

$$T := \lceil \lg N \rceil$$

- Roundoff so $2^T|N$

- T perfect splits to $L^T(N\vec{1})$

- Endgame: Win in R from
 $(0, 2^R); (1, 2^R - 1); (2, 2^R - 3); (3, 2^R - 5)$
A Combinatorial Approach

1-Set: Subset of \(\{Y, N\}^Q \) with

- **stem**: \(YNNYNYY \)
- **child**: \(YYYNNYN \)
- **child**: \(YNYYYYN \)
- **child**: \(YNNYYYN \)

0-Set: Any Singleton

\(K \)-Set: Depth \(K \) tree with marked “lies.”

- **parent**: \(YYYNNYN \)
- **child**: \(YYYNYNN \)
- **grandchild**: \(YYYNYYYY \)

Theorem: Paul Wins from \((x_0, \ldots, x_K)\) in \(Q \)
\[\Leftrightarrow \text{Can Pack } x_i \text{ } K - i \text{-Sets in } \{Y, N\}^Q \]
Bound Packing of K-Sets

- When all have $\geq LN$, Size $> \binom{L}{\leq K}$

$L \sim \frac{Q}{2}$ Volume Bound $2^Q/\binom{Q/2}{K}$

$o(2^Q Q^{-K})$ have any $L < (1 - o(1)) \frac{Q}{2}$

$A_K(Q) < (1 + o(1)) 2^Q/\binom{Q/2}{K}$

Careful Cutoff

Set $L = \frac{Q}{2} + c \sqrt{Q} \sqrt{\ln Q}$

$A_K(Q) \leq \frac{2^Q}{\binom{Q/2}{K}} (1 + cQ^{-1/2} \sqrt{\ln Q})$

Yan/JS: Remove $\sqrt{\ln Q}$
Two Batch Strategy

Deppe/Ahlswede/Cicalese/Mundici/Dumitriu/JS

\{Y, N\}^{r*}: Number Y within \(r^{0.6}\) of \(\frac{r}{2}\)

\(|\{Y, N\}^{r*}| \sim 2^r\)

"Assume" \(N = |\{Y, N\}^{r*}| \sim 2^Q/(2Q)\)

Associate \(\sigma \in \{Y, N\}^{r*}\) with possibility

Batch 1: \(1 \leq i \leq r\): Is \(\sigma_i = Y\) ?

Carole must say No about half the time!

Endgame from \((1, \sim \frac{r}{2})\) in One Batch
Arbitrary Channel

T-ary queries

E lie patterns

Example with $T = 3$, $E = 4$

Ternary Answers A/B/C.

Carole may lie B for A, A for B, A or B for C.

Theorem (Dumitriu, JS):

\[A^*_K(Q) \sim \frac{T^K T^Q}{E^K \binom{Q}{K}} \]
Open Question

What is the maximum number $G(R)$ of disjoint 1-Shadows in $\{Y, N\}^R$?

$$\frac{2^R}{R+1} \leq G(R)$$

$$G(R) \leq 2^R \frac{2^R}{R}(1 + o(1))$$

Asymptotic Factor of Two Gap.
Jim Propp’s
Random Walk
Simulator
The P-Machine on \mathbb{Z}

Initially: Arbitrary chips on even positions

Every position x has “arrow” $\epsilon_x = \pm 1$.

Initially: All ϵ_x arbitrary

Each round every chip moves one position

If $2a$ at x then a to $x \pm 1$.

If $2a + 1$ at x then a to $x \pm 1$.

Then “odd” chip to $x + \epsilon_x$ and,

critically, reset $\epsilon_x \leftarrow -\epsilon_x$.
The L-machine

Chips infinitely divisible

If b at x then $\frac{1}{2}b$ to $x \pm 1$.

Chips at (x, t) is Expected Number if every chip takes Random Walk

Fix initial start, arrows

$P(x, t)$ chips at (x, t) in P-machine

$L(x, t)$ chips at (x, t) in L-machine

Theorem:

$$|P(x, t) - L(x, t)| \leq 3$$
Generalizations

Any bipartite graph G with Finite Degrees

Initially: All chips on “even” positions

Each x has arrow toward neighbor

For each x ordering of neighbors.

Put “extra” i chips to next i neighbors

And, critically, readjust arrow

\textit{Sometimes}

\[|P(x,t) - L(x,t)| \leq K_G \]

\textit{JS/Cooper: Yes for Z^d}
Outline of Argument (for Z)

Time backwards from T to zero

X_T, \ldots, X_0. $X_T = P(x, 0)$, $X_0 = L(x, 0)$.

X_t: Do P until t then L until zero

$$F(d, t) := \Pr[S_{t-1} = d - 1] - \Pr[S_t = d]$$

$$-F(d, t) = \Pr[S_{t-1} = d + 1] - \Pr[S_t = d]$$

$$X_{t-1} - X_t = \sum_d A(x - d, t)$$

$A(x - d, t)$ \begin{align*}
&\equiv 0 & \text{if even chips at } w \\
&\equiv F(d, t) & \text{if odd chips, } \rightarrow \\
&\equiv -F(d, t) & \text{if odd chips, } \leftarrow
\end{align*}
\[X_0 - X_T = \sum_t \sum_w A(x - d, t) = \sum_w \sum_t A(x - d, t) \]

Fixing \(d \)

\(F(d, t) \) unimodal, same sign

\[\Rightarrow |\sum_t A(x - d, t)| \leq \max_t |F(d, t)| = O(d^{-2}) \]

\[X_0 - X_T \leq \sum_d O(d^{-2}) = O(1) \]